C++QED  2.100.2 (v2 Milestone 10 Development branch)
a framework for simulating open quantum dynamics
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Friends Macros Modules Pages
Bibliography
[1]

David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost and Beyond (C++ in Depth Series). Addison-Wesley Professional, 2004.

[2]

H. J. Carmichael. Spectrum of squeezing and photocurrent shot noise: a normally ordered treatment. J. Opt. Soc. Am. B, 4:1588, 1987.

[3]

H. J. Carmichael. An Open Systems Approach to Quantum Optics. Springer, 1993.

[4]

J. Dalibard, Y. Castin, and K. Molmer. Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett., 68:580, 1992.

[5]

L. Diosi. Stochastic pure state representation for open quantum systems. Phys. Lett. A, 114:451, 1986.

[6]

R. Dum, P. Zoller, and H. Ritsch. Monte Carlo simulation of the atomic master equation for spontaneous emission. Phys. Rev. A, 45:4879, 1992.

[7]

N. Gisin and I. C. Percival. The quantum-state diffusion model applied to open systems. J. Phys. A, 25:5677, 1992.

[8]

QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comp. Phys. Comm., 183(8):1760 – 1772, 2012.

[9]

J.R. Johansson, P.D. Nation, and Franco Nori. QuTiP 2: A Python framework for the dynamics of open quantum systems. Comp. Phys. Comm., 184(4):1234 – 1240, 2013.

[10]

C. Maschler, I. B. Mekhov, and H. Ritsch. Ultracold atoms in optical lattices generated by quantized light fields. Eur. Phys. J. D, 46(3):545–560, MAR 2008.

[11]

K. Molmer, Y. Castin, and J. Dalibard. Monte Carlo wave-function method in quantum optics. J. Opt. Soc. Am. B, 10:524, 1993.

[12]

D. Nagy, P. Domokos, A. Vukics, and H. Ritsch. Nonlinear quantum dynamics of two BEC modes dispersively coupled by an optical cavity. Eur. Phys. J. D, 55(3):659–668, DEC 2009.

[13]

Wolfgang Niedenzu, Rainer Schulze, András Vukics, and Helmut Ritsch. Microscopic dynamics of ultracold particles in a ring-cavity optical lattice. Phys. Rev. A, 82(4):043605, Oct 2010.

[14]

M. B. Plenio and P. L. Knight. The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys., 70(1):101–144, Jan 1998.

[15]

A. N. Soklakov and R. Schack. Conditional evolution in single-atom cavity QED. Phys. Rev. A, 65:013804, 2002.

[16]

S. M. Tan. A computational toolbox for quantum and atomic optics. J. Opt. B: Quant. Semiclass. Opt., 1:424–432, 1999.

[17]

G. Vidal and R. F. Werner. Computable measure of entanglement. Phys. Rev. A, 65:032314, 2002.

[18]

A. Vukics and H. Ritsch. C++QED: an object-oriented framework for wave-function simulations of cavity QED systems. Eur. Phys. J. D, 44:585–599, 2007.

[19]

AndrĂ¡s Vukics, Christoph Maschler, and Helmut Ritsch. Microscopic physics of quantum self-organization of optical lattices in cavities. New J. of Phys., 9(8):255, 2007.

[20]

András Vukics, Wolfgang Niedenzu, and Helmut Ritsch. Cavity nonlinear optics with few photons and ultracold quantum particles. Phys. Rev. A, 79(1):013828, Jan 2009.

[21]

András Vukics. C++QEDv2: The multi-array concept and compile-time algorithms in the definition of composite quantum systems. Comp. Phys. Comm., 183(6):1381–1396, June 2012.