C++QEDElements  v2 Milestone 10
a framework for simulating open quantum dynamics – generic elements
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
[detail level 12]
 NaveragingUtils
 CCollecting
 CTransferring
 Nmljc
 CBase
 NmodeContains helpers for the Mode bundle
 CAveraged
 CAveragedMonitorCutoff
 CAveragedQuadratures
 CExact
 CFockStatePreparationError_CheckYourCutoffAgainstDesiredFockState
 CHamiltonian
 CLiouvillean
 CLiouvillean< false, IS_ALTERNATIVE >
 CLiouvillean< true, IS_ALTERNATIVE >
 NmultilevelContains helpers for the MultiLevel bundle
 CDecayClass representing an elementary decay term (a $\gamma_{ij}$ here) with a compile-time pair $i,j$ and a runtime real value
 CExact
 CHamiltonianIP
 CHamiltonianSch
 CLevelsMF
 CLiouvillean
 CMultiLevelExactNotImplementedException
 CPumpClass representing an elementary pump term (an $\eta_{ij}$ here) with a compile-time pair $i,j$ and a runtime complex value
 CRealLevelsMF
 CStorage
 CStorage< double >
 Nparticle
 CAveraged
 CExact
 CHamiltonian
 CInitialCondition
 CSpatial
 Nqbit
 CAveraged
 CExact
 CHamiltonian
 CLiouvillean
 CLiouvilleanPhaseNoise
 Nspin
 CPars
 CBIG_CLASS_NAME
 CCouplingClass representing an elementary coupling term (a $g_{ij}$ here) with a compile-time pair $i,j$ and a runtime complex value
 CEmptyAveragingBaseForInteractions
 CLossyModeImplements a mode damped with rate $\kappa$, that is $H=\lp-\delta-i\kappa\rp a^\dagger a$, in a fully exact way, that is $\ket{\Psi(t)}=e^{-z\,t\,a^\dagger a}\ket{\Psi(0)}$, and $\Liou\rho=2\kappa\lp(n_\text{Th}+1)\,a\rho a^\dagger+n_\text{Th}\,a^\dagger\rho a\rp$
 CLossyModeSchSame as LossyMode, but in Schrödinger picture
 CLossyModeUIPSame as LossyMode, but in unitary interaction picture, defined only by the $-\delta\,a^\dagger a$ part of the Hamiltonian
 CLossyQbit
 CLossyQbitSch
 CLossyQbitUIP
 CLossyQbitWithPhaseNoise
 CLossyQbitWithPhaseNoiseUIP
 CLossySpin
 CModeImplements a free mode, that is, $H=-\delta\,a^\dagger a$ in a fully exact way, that is $\ket{\Psi(t)}=e^{i\delta\,t\,a^\dagger a}\ket{\Psi(0)}$
 CModeBase
 CModeSchSame as Mode, but without exact propagation
 CMultiLevelBase
 CParameterTableIntroduces ParameterTable into the global namespace to break ambiguity between update and parameters::update
 CParticle
 CParticleBase
 CParticleSch
 CPumpedLossyModeCombines LossyMode with pumping in full (non-unitary) interaction picture
 CPumpedLossyModeAlternative
 CPumpedLossyModeIP_NoExact
 CPumpedLossyModeSchCombines LossyModeSch and PumpedModeSch
 CPumpedLossyModeUIPCombines LossyModeUIP and PumpedMode
 CPumpedLossyMultiLevelSchImplements a free multi-level system with driving and loss
 CPumpedLossyQbit
 CPumpedLossyQbitSch
 CPumpedLossyQbitUIP
 CPumpedModeImplements a pumped mode, that is $H=-\delta\,a^\dagger a+i\lp\eta a^\dagger-\hermConj\rp$ in interaction picture defined by the first term
 CPumpedModeSchSame as PumpedMode, without exact propagation
 CPumpedParticle
 CPumpedParticleBase
 CPumpedParticleSch
 CPumpedQbit
 CPumpedQbitSch
 CQbit
 CQbitBase
 CQbitSch
 CReducedDensityOperator
 CReducedDensityOperatorNegativity
 CSpin
 CSpinBase
 CSpinSch